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Frequency locking and devil’'s staircase for a two-dimensional ferrofluid droplet
in an elliptically polarized rotating magnetic field
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Numerical studies reveal that the dynamics of a magnetic fluid droplet under the action of an elliptically
polarized rotating magnetic field can be quite complicated, including a transition to a chaotic behavior. On the
basis of equations of motion derived by a virial method, the devil's staircase, and its Farey tree structure, is
found for the time-averaged angular velocity of the droplet as a function of the angular velocity of the
elliptically polarized field. By considering frequency lockigrnold tongueg with respect to the magnetic
Bond number, we establish multiple basins of attraction in different regions of the parameter space. The fractal
character of basins of attraction is revealed and phenomena of hysteresis are shown from numerical scanning
of the region of control parameters. The existence of period doublings and the transition to chaotic behavior at
large field ellipticity parameters is suggested on the basis of phase spacd $1@83-651X%97)00502-3

PACS numbgs): 47.52:+j, 75.50.Mm, 83.50.Lh

[. INTRODUCTION cludes a wide variety of very complex phenomena in the
high-frequency rang¢7]. In the low-frequency range the
A system with a nonzero magnetic dipole moment in ashape of such a droplet is close to a general ellipfdjé].
rotating magnetic field tends to follow the field rotation until This behavior, even at low frequencies, could be rather com-
some critical frequency is reached, at which time the frictionPlex, since a droplet has more degrees of freedom than a
torque can no longer be balanced by the magnetic torijue  figid magnetic dipole under the action of a rotating field. For
At this point a “breakoff” takes place and the rotation of the Such a system the viscous energy dissipation is significant
dipole becomes “jerky.” In the case of an elliptically polar- and the inertia plays no role c_Jue to the small size of droplet_s.
ized field similar phenomena are observed for a bound paiy € response of a MF microdrop to a rotating magnetic
of nonmagnetic particles in a magnetic flji2,3]. Interac- field is studied numerically in two dimensiorigD) by the

tion between magnetic and viscous forces leads to variou?Oundary element methodBEM) in [9]. In thg low-
modes of motion, classified 44) steady-state rotatior(2) requency range the elongated droplet rotates with the fre-

) . - : guency of a magnetic field. An increase in the field fre-
rotation with stops and backward motion; a8} localized quency may cause the motion of the droplet to go through a

OSC.'”at'O”S' Trgnsmons k_)etween the_se modes are well det?ansition from a state in which the droplet follows the mag-
scribed by a single nonlinear equation and depend on thfayic field with a constant phase lag, to a state in which the
frequency, the amplitude of the rotating field, the fluid vis- yhaqe |ag increases in a series of kinks. The transition takes
cosity, and the magnetic susceptibility. It is established, botly|ace at a critical field frequency, which is a function of the
experimentally and numericallj3] that for a pair of free fie|g amplitude. Equations of the droplet motion are derived
spheres frequency locking takes place in an elliptical polaranalytically and show good agreement with the BEM.
ized field for )/, =1/2, 1/4, etc., wheré) is the average Two different types of steady-state behavior are observed
angular frequency of the pair rotation, afigh is the angular  depending on the magnetic field strengith Both types of
frequency of the magnetic field rotation. Recent studies of &ehavior are discerned by a critical value of the magnetic
pair of rigid (undeformablg ferrofluid drops in a rotating bond number
magnetic field 4] display the existence of a frequency pla-
teau in the high-frequency range for the pair rotation, thus
demonstrating the relevance of internal rotations. Chaotic
motion of a compas$5], and that of a permanent magnet
rotor [6] in an oscillating field, are other well known ex- for a droplet of radiu®R, surface tensiowr, and permeability
amples of complex dynamic behavior in an oscillating field . The bond number gives the threshold value for instability
when the inertia of the system plays a considerable role. Thef a 2D MF circular droplet in a high-frequency rotating field
behavior of a liquid microdroplet, typically 1@m sized and  with respect to the elliptical deformatioh,8,10. At u=15
made of a magnetic fluidMF), has been experimentally Bm.,=28.14.
studied under the action of a rotating magnetic field. It in- (i) “Low-field” behavior: If the magnetic bond number

is less than the critical value, the droplet extension in station-

ary configurations diminishes as the rotating field frequency

* Associated with the Centre National de la Recherche Scientiincreases. The maximal phase lag vaittié is reached at an

fique. infinite frequency.

H2:R
Bmcr:T:67T(M+l)3/(,U«_l)3a (1)
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Y, constant gradients;, of velocity field
3 B
i H Vi= YikXk - v
) Consequently, equations of motighl] may be expressed in

a nondimensional form in the following way:

X - 2a* (n—1)? Hoa 1
b H, a= m(a*+1+2\a°) 16 a H2 (a%+u)?
H3, 1 ®(a) 3
n Gin H3 (a’u+1)?) a*-1| ©)
Sex
. HoaHop Bm  (u—1)%a°
®"THZ 87 (aZtp)(aZutl)
FIG. 1. Sketch of the droplet in laboratory coordinates. 232 aj_i +)\(a4— 1)
(i) “High-field” behavior: For magnetic bond numbers 22 M@+ 1) 4

larger than the critical value the maximal phase(lagr/4) is

reached already at a finite critical frequeri@y,(Bm). It was Here Ho, and Ho, are the instantaneous projections of the

shown in[9], by a linear analysis of small perturbations of o014 field intensity on both axes of an elliptical droplet,
differential equations, that for a motion near the stationary

point, a finite viscosity inside the droplet brings about stabi- d(a)=[(a%+1)E(e)—2K(e)],
lizing effects and assists the droplet to follow the magnetic
field rotation. At “high-field” values it results in time-
averaged frequency jumps from the field frequeiity to
some smaller value just above the critical frequeficy. By
increasing the ratio of viscosities= 7;,/ 7. the critical fre-
guency()., may be slightly reduced to approach the analyti- 2
cal valueQ, [see relation(14) further in the text E(e)=j V1— (e sinx)?dx
Preliminary simulations have shoy@] that in the case of 0
rotating elliptically polarized magnetic fields the frequency
locking takes place as demonstrated 3h Frequency lock-
ing and observation of the devil's staircase in a phase plane

2
Q/Q,, versusy is the subject of the present paper. K(e)=f 1/y1— (e sinx)%dx
0

A=l e, a=agin/R,

where

and

II. EQUATIONS OF MOTION FOR A 2D ELLIPTIC

DROPLET IN AN ELLIPTICAL ROTATING FIELD are complete elliptic integrals of the first, respectively, sec-

ond kind, e>=1—b?%a?, 7,, 7. Viscosities of fluid in-
We made use of the equations of motion deriveddh  side, respectively, outside the droplet.

and improved iN11]. The set of equations describes a MF  The radius of a circular droR= yagmbgm and a time

droplet in a low-frequency rotating field under the assump-scaling unitr,=R7./o are used to obtain a nondimensional

tion of a 2D elliptic shape and accounts for shear flow ocform of equations. The interplay of magnetic forces and sur-

curring inside the droplet. A 2D Stokes flow problem outsideface tension is characterized by the magnetic bond number

the droplet is solved exactly, whereas the flow inside is deBm=H 2R/o.

scribed in the approximation of constant velocity gradients. The main improvement in comparison with the equations

Dynamic boundary conditions are satisfied integrally by em-<onsidered if9] is a more adequate representation of the

ploying the virial moment technique. Arbitrary viscosities of extensional motion of a droplet as well as of the rotational

a fluid inside and outside the droplet are considered. Thenotion caused by the shear flow inside a droplet. Compari-

small size of a microdroplet and relatively small characterisson with results of numerical simulations by BEM proves

tic velocities of a flow allow us to neglect inertia and gravity that these equations of motion can be used to simulate the

terms, thus focusing attention on surface tension and madeehavior of a droplet in a magnetic field with a fairly good

netic forces on the surface of the droplet. Hence, the dynanaccuracy.

ics of the free surface of the droplet can be described within In the case of an elliptic field polarization, instantaneous

a framework of the creeping flow model. components of the external magnetic field are given by the
An elliptic incompressible MF droplet is completely de- following relations:

termined by the length of its large semiaxas;,, and the

angle¢ of its orientation with respect to thé,,;, axis of the Hx(t) =Hoxcog Qpt),

laboratory framesee Fig. 1 To conserve the elliptic shape

of the droplet the flow inside the droplet is approximated by Hy(t)=Hgysin(Qut). (5)
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By assumingHyx=H,y the parametery is introduced to Here ¢, =Qut. In the case of a circular field polarization

control the magnetic field ellipticity (y=0) we have
Hox=HoV1+7, ©®) hal,=0=coS(en—¢),
Hov=Hov1-, hZ]- o= Sirf(eu— ),
y= —H§X_H§Y. (7) hahp|,=0=SiNA oy — ¢)/2.
Hox+ Hoy

It follows from the above relations that in the case of a cir-
The above provision allows us to keep the effective magnetieular field polarization, the rigid droplet limit\—c) is
bond number Bm¥H §R/o constant by fixing the mean analogous to a bound pair of soft magnetic parti§@s
square value of the external field which in turn is achieved

by selectingH,, for any y value ¢=Q0¢sinApy— @), (13
m:[HoxCOS(QH'[)]Z"‘[HoYSin(QH'[)]Z 0. Bm (n—1)%a%(a*—1) (14)
:%(H(%X_'—HCZ)Y):HS (8) o 167 (aZ+M)(a2/,L+1)(a4+l)

Hence, the elliptically polarized field is defined by its “av- The time-averaged frequenéy of a droplet rotation is de-
erage” intensityH, and the ellipticity parametey. For a  fined as
physical interpretation, the elliptically polarized field can be

divided in a pure rotational fielH,, with the following = lim f ot (15
components: O ee
Hx ro(t) =Hov1—7y cogQyt), An analytical integration for Eq(13) gives the following

expression foK):

HY,rot(t):HO V1—1y sin(Qut),

and a nondimensional amplitudg,=+1— vy, and a pure
linearly oscillating fieldH ,s with components

0=0,-0Z-02. (16)

It is worth noting that the value d is fixed: it corresponds
either to a “rigid droplet” approximatiofa>1) or a “high-

Hx,0sd) =Ho(V1+y=v1-y)cosyt), frequency” approximatior},;>(Q,,). Provided(),,/Q,—,
the approximation of “very high” frequencies is reached
Hy,osdt) =0, yielding
and a nondimensional amplitudgs~+1+y—+1—7y. By Y
increasingy from 0 to 1 the rotational field amplitudi,, O~ (17)
tends to approach 0, whereas the oscillating field amplitude 2Q

hyscincreases from 0 t@2. . . . .
The instantaneous projectiotdy,, Ho, Of the external Itis r'eporte_d i 4] that after ajerky' regime, the frequency of
field intensity in the directions of both axes of an elliptic @ Pair rotation reaches a plateau independeri2,pf Hence,

droplet are implemented in Eq) and (4), and derived as at sufficiently high frequencieg(,,/Q>10) the above ap-
proximations could be too rough to describe the behavior of

Hoa(t)=Hx(t)cosp+ Hy(t)sing, a droplet. Therefore it might be necessary to account for
effects like internal rotation.
Hop(t) = —Hy(t)sing+ Hy(t)cosp. 9 The elongation of a droplet depends on the intensity of an

applied magnetic field. In the stationary case0 and the
Let us introduce the two nondimensional components of thenajor semiaxisa could be obtained from Ed4)
field in the direction of the semiaxes of an elliptic droplet
ha:HOa/HO andhb:HOb/Ho. Then (,LL_].)Z 1 1 (b(a)

32 PR\ @2 7 @i 1)?) a1

(18)
h2=[1+ cos2p,c0S2p + ¥(COS2py+ COS2p)

— 5. : The dependence @ on Bm is plotted in Fig. 2. Curves for
VL= yisinZeysin2p}/2, (10 different u values certify that the influence of the magnetic
permeability on the droplet extension could be very strong.

2__ _ _
hp=[1~C0oS2py,c052p+ y(COSpyy — COSZp) Above the magnetic field threshold an instability with re-

— V1= ¥%sin2p,sin2p]/2, (11)  spect to elliptic shape perturbations may occur. Depending
on the magnetic permeability, it is instability either of the
hahp=[ — COS2pySiN2p— 7y SiN2p first kind (4<<10.7J) or of the second kindx>10.71) [10].

In the case of an elliptic field polarization the equation for
++1—y“sin2pcos2p]/2. (12 phase lag4) in the rigid droplet limit\—c becomes
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FIG. 2. Droplet extension in a time-averaged high-frequency
rotating magnetic field. (b)
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To obtain) analytical integration of Eq(19) is obviously 2 1
not feasible. B 0.45 7 r
E
I1l. NUMERICAL TECHNIQUE go
AND FREQUENCY LOCKING 'g 040
IN AN ELLIPTICALLY POLARIZED FIELD B
To solve the system of equations of moti@) and (4),
the fourth-order Runge-Kutta algorithm is applied. The
0.35 ——

time-averaged frequency) is obtained in the following 0375 0350 T o

way: at first in order to achieve attractor from the basin Fi
s . . . . ield frequency €3,
chosen by initial conditions a numerical algorithm is run
during a specified transition tim&,. After N field revolu- (©
tions the winding numbefr12]
1 Tt+27TN/Q‘H . O~ P 172 ¥ 173
WN:27TN J’Tt (Pdt: 2N (20) 12 - 2/5 M 173
L 37 B 2/5 B 3/8 r 173
is found. The averaged frequenfy=wy(},, could be found 512 2/5 v BTy 4
with an arbitrary accuracy by increasify Truncation er- s M8--5/13 821~ —3/8 7194/
: RN N
rors, as well as the accuracy of the Runge-Kutta algorithm, 2593 1281 11729 11/30
should be taken into account. In FigiaBthe winding num- 1128

ber wy=Q/Q, is plotted versus the field frequendy,,

Bm=50, u=15, A=5, y=0.15. The time step employed in G, 3. (a),(b) (expanded view Winding numberw vs mag-
the different calculations below equalt=0.01. The solid netic field frequencyy, . Bm=50, =15, \=5. Field ellipticity
curve depicts the winding number obtained by increasing parametery=0.15. The solid line corresponds to the increase of
the field frequency, the dashed one by decreasing it. TW@equency and the dashed one to its decreémeFarey tree con-
new phenomena are introduced by the elliptic field polarizastruction of the observed frequency-locking intervals.

tion: frequency locking in certain frequency ranges and

overlapping of modes. The first two frequency-locking inter-overlaps with the mode,; prior to a jump back to the mode
vals w;;; and wy,, are rather wide and correspond to the Wy A further increase in the field frequency causes princi-
frequency range in which the droplet rotation is stabilized inpal sequential frequency lockingsy s, Wy, Wys to take
the case of the circular field because of the finite valug.of place, i.e., the principal sequence of the frequency locking
The overlapping of the modes results in a hysteresis: inexhibits itself. According to the Farey tree law between two
crease in the field frequency causes a jump in the phase plafgodes with winding numbens,/q; andp,/q, there shall be
from the modew,, directly to the modew,,, passing over another mode {;+p,)/(d;+0,). Hereafterwy,=Q/Qy
nonexistent modes of winding numbers between 1 and 0.5. A= p/q, wherep,q are integer, is used to denote frequency
decrease in the field frequency attests that the mage ratios. The classical devil's staircag#2,13 has a fractal
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structure where sequentially all the ratios from the Farey tree L& 12
[12] are present. Here one may see a degenerated devil's 23&n1&12
staircase since an overlapping takes place and winding num- 23&11
bers between modes,,; andw,, are not present. Obviously
degeneration could be eliminated by increasigsince it
diminishes the stability of the droplet rotation with the field
frequency(see Fig. 1D

Another overlapping of frequency-locking intervals takes
place at field frequencies in the range of about
0.372<(0;=<0.376 where the mode/,,, is detected at the ;
increase of the frequendgee Figs. &), 3(b)]. A frequency 80
decrease displays a few smaller frequency-locking steps v
(W5 Ws/0 andwsy,) and rather complex behavior between 70
the steps. In accordance with properties of the devil's stair-
case the intervals of complex behavior could consist of
frequency-locking intervals. However, their width may be
too small to be detected using the frequency step
AQ=0.0005 employed for present calculations.

In Fig. 3b) the frequency range 0.3%X),,<0.385 is
magnified for the sake of comparison with Figag The left
part of the plot is degenerated due to the overlapping of
modes already mentioned above. For frequencies larger than
0,,=0.377 the character of the curve changes into the clas- 10 ,
sical devil's staircase[13], the winding numbers for 0.30 035 0.40 045 0.50
frequency-locking intervals correspond closely to the Farey Field frequency
tree[12,13 as shown in Fig. ). At magnification one can
see quite well the self-similarity of the devil's staircase inthe FIG. 4. Frequency-locking domain@rnold tongues in the
specified frequency range. phase plane Bm v€,,. y=0.15, u=15, A\=5. Near the origin of

It is evident from Eqs(3) and(4) that the motion depends Arnold tongues scanning ste&yBm is shown by error bars. A scan-
on five parameters: Bny, A, vy, Q. Here we do not in- ning step along thé€), axis is smaller than 0.0002. At larger values
tend to discuss the influence of the magnetic permeahility of Bm a scanning step may be taken larger because boundaries of
on solutions, however it should be pointed out thatannot ~ Arnold tongues are nearly straight lines at that range.
be simply eliminated from the equations of motion by in-
cluding it inside the magnetic bond number since there ar
two terms like(a®+u) and (a?u+1) which contain botha
and u. In the present paper we focus on the casgefl5
which corresponds to an intermediate valueupfince spe-
cial effects, caused by different choices gpfhave not yet
been detected.
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merical algorithm, one fails to observe any frequency lock-
?hg. Behavior of frequency locking seems to be more or less
regular from the frequency range of the madg; to infinity
as well as for Bm larger than 40; i.e., the boundaries of the
frequency-locking domain are parallel with a fixed slope. By
increasingq, the frequency width of the frequency locking
wyq decreases. A rather broad overlapping of domains for
the modesw,;; andw,,, takes place for lower frequencies.
IV. FREQUENCY LOCKING IN DEPENDENCE On the contrary, there is no overlapping between the modes
ON MAGNETIC BOND NUMBER W1y aNdWoys. o
A more complex behavior is observed for2Bm<34
The behavior of a MF droplet in a circular rotating mag- and field frequencies 0.32),,<0.36. An expanded view of
netic field has already been described above. It presents twthis section of the phase space is reflected in Fig. 4. Bound-
different scenarios[9] corresponding to “low-field” or aries for frequency-locking domains,,s and wy, may not
“high-field” regimes. be determined exhaustively due to the finite numerical meth-
Similar properties are inherited in the case of the ellipticods, whereas the domain boundaries for locking of winding
field polarization. In Fig. 4 frequency-locking domains are numberswy;;, Wy, W,/5, andwsys are detected more accu-
plotted in the phase plane Bm verslg . One can clearly rately. These values are presented in more detail in a magni-
see the field threshold, below which only one medew,;,;  fied plot, where overlapping of four modes takes place in the
(the droplet locked to the fielccorresponding to scenario | point (2,;,=0.335, Bm=30.5 of the parameter space. Trajec-
may exist. Above this threshold different frequency-lockingtories of the droplet’s tip in the laboratory coordinates are
domains may appear. An increase of Bm results in practidepicted in Fig. 5. The trajectories exhibit a rather stable
cally no changes regarding the width or the slope of domaimotion without any transition. The selection of the mode in
boundaries. which a droplet locks itself depends on the initial conditions.
The principal sequence of the frequency locking may beTo illustrate it, the basins of attracti¢t4] are plotted in Fig.
arrived atwy,, whereq is an integer. As a general rule, all 6. This map represents the laboratory coordinates of the
the subsequent locks become more and more narrow ardtoplet tip at an initial momentt=0) at which a magnetic
hence harder to detect. If the width of the frequency-lockingfield according to Eq(5) has only a positiveX component.
plateau becomes smaller than the frequency step of the nthe basin of attraction leading to the mode, consists of
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Phase portraits of the droplet's tip Expanded view of the are from the map
of initial states for different modes of locking

FIG. 5. Four different modes for the poinf)y=0.335, Bm

=30.5 of the phase plangu=15, =5, y=0.15. FIG. 7. Expanded view of the area from Fig. 6. Mode
Wy: empty circles,wq,: crosseswys filled circles, wys -

four domains. These are separated by the maoge as is  (hyphens.
displayed in the diagram. Domains of initial conditions for
the modew,,; are concentrated near the corresponding Pointhe modew,s by small “-” characters(hypheng. The main
caresections at time momentg=nm/Q,,. The structure of conclusion drawn from both figures indicates that the mode
the spiral tails of these domains is interesting: it, as well agould be very sensitive to the choice of initial conditions of
initial points for modew,,5, exhibits fractal-like properties, evolution.
illustrated by the expanded view of the present picture,
shown in Fig. 7. In both diagrams the moudg/, is shown

by empty circlesw,,: by crossesw,,s: by filled circles, and V. DEPENDENCE OF FREQUENCY LOCKING

ON THE FIELD ELLIPTICITY PARAMETER

Y Another important question pertains to the behavior of the
threshold of the magnetic field at a fixed frequency and dif-
ferent values of the ellipticity parameterof the field polar-
ization. Figure 8 shows that an increaseyiof up to y=~0.3
causes negligible change in the threshold value thus confirm-
ing that the field threshold value is characterized by the mag-
netic bond number. The two curves in Fig. 8 are indicative of
an increasing bond numbésolid curve and a decreasing

fSoTiiiias Xm 140 ] 1 . 1 R 1
=— Bm

120 r
100 ].1215, 7\.=5, QH=0'4 -
o 80 -
///////// 60 - .
I mode 1/1 B BB mode 2/3 40 _
mode 1/2 fi mode 3/5 ] [

»_nge rye . . 1 :1 0.1
Map of initial conditions, leading to different modes 20 00 01 ' o2 10'3 ' 04
: ) : . -

FIG. 6. Map of initial conditions for four different modes of Fig.
5. Mode wy;: empty circles,wq: crosses,w,g: filled circles, FIG. 8. Magnetic field threshold vs the ellipticity paramejenf
was =" (hyphens. the field polarization.
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(a) nomena depending on the control parameter is the so-called
Arnold’s tongue diagram[13,15. Figure 9a) plots
frequency-locking domains in the phase plane of the field
ellipticity parametery versus the field frequend,, for Bm
=50, u=15,A=5. Two modesw,;; andwg,; predominate in

the frequency rang@,, without any overlapping. The space
between these modes is filled with Arnold’s tongues for
other modes ay<0.275. The boundaries of the domaing;
andwg,; are quite smooth, except for a quite sharp decrease
in the slope of the moder,,; at y of about 0.275. The value

of y=0.275 turns out to be near the criticalvalue above
which the droplet motion becomes chaotic and Arnold’s
tongues lose their orderly structure. Qualitative phase plots
show that period doublings and transition to chaotic dynam-
ics take place in the above region. The droplet behavior for
v>0.275 (Region X illustrated by the phase space plots,
Lyapunov indices, and Fourier spectra will be addressed in

Field ellipticity y

0.0 0.1 02 03 04 0.5
Field frequency Q, future publications. Expanded view of Figa®below y=0.3

is given in Fig. 9b). Flat top boundaries of the tongues close
® to “Region X" are approximate; detailed investigation of

the structure requires further studies. We would also like to
point out that one can see two sequences of frequency lock-
ing in Fig. 9b); the principal sequence is represented as 1/
the second one as(2g+1), whereq is the integer. Beyond
Wy0 the structure of tongues becomes too dense to be
shown, intervals *“-” are used to substituten,, and
Woy2q+1) fOr @>10. A unique property of the present sys-
tem is the overlapping of modes,; and wq,: even at
v—0 a complete overlapping takes place. The placement of
the frequency-locking domaiw,,; at v of about 0.27 and
0,,~0.35 looks curious, but in fact it evidently may be ex-
plained with common properties of the structure of Arnold’s
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A
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1
] i 2:5 R
0.00 T = T T

025 030 035 0.40 045 050 tongues in the case of a supercritical regirh6]. Through-
Field frequency O, out all the present work, we use valye=0.15 every time

when parametel is fixed (i.e., when it is constaht This
FIG. 9. Arnold’s tongues diagram in the phase plane defined byalue of y is regarded as a moderate value of the control
the field ellipticity parametery and the field frequency),, . (a) parameter for the field ellipticity.
Frequency-locking domains fov,,; andwg,;. (b) Expanded view of

the frequency-locking domains for intermedigteralues.
VI. DEPENDENCE OF FREQUENCY LOCKING

. . ON THE VISCOSITY RATIO
bond number(dashed curve the shift between these dis-

playing the presence of a hysteresis which magnitude corre- An increase in\. corresponds to an increase of the viscos-
sponds quite well to the magnitude of hysteresis for dropletty ratio. Here we may discuss the caseb5, a case of mod-
elongation in a quasistatic fie[d0]. If v reaches some lim- erate MF viscosity compared {@], wherex~100. 2D simu-
iting value, the droplet is locked by the oscillating compo- lations using the boundary element metthdd] show that in
nent of the field and the rotating component is too weak tdhe case of an arbitrary shapeithout the constraint of an
cause the rotation of the droplet, the tip of the droplet mayelliptic shapg, a ferrofluid droplet displays a transition to an
only provide small localized oscillatior(snodewy,). “ §’-like shape fora>1 and even foh=>5. Nevertheless, the
Influence of y on the frequency locking tavy, is ob-  results of present studies could be applied becausg &
served in Fig. 8, i.e., the mode of localized oscillations with-the bending just slightly eliminates effective extension of the
out rotation of a droplet may be observed. The critigal droplet and thus causes a minor decrease in the friction co-
value equals abouy=0.3-0.4(Bm=30-140Q. This corre- efficient. General properties of droplet rotation still remain
sponds to the amplitude of a pure rotating fieldidentical.
h,,=0.84-0.77, whereas the amplitude of a pure oscillating Arnold’s tongues are plotted in the phase planéog-
field equalsh,,=0.30—0.55 undimensional units. The maxi- scalg versus{), in Fig. 10. The values of passive param-
mum y value for the droplet rotation increases as the value oéters are Br+50, u=15, y=0.15. The overlapping of modes
Bm is raised. Upon increasing Bm, the rise in the magnetiav,;; andw,,, is a common phenomenon up ke=115; for
torque turns out to be more significant than the rise in thdarger values ofA modes do not overlap. Overlapping of
friction torque thus the droplet can perform full revolutions modesw,,, andwy;; occurs only at values of up ton~1.5.
of up to a slightly highery limit (see Fig. 3 In general, an increase Mthins down the frequency-locking
Traditional representation of the frequency-locking phe-width thus tending to eliminate the overlapping. Neverthe-
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Bm=50, p=15, y=0.15

-

let, as well as a droplet in a pure circularly polarized mag-
netic field, fails to exhibit any frequency locking. Naturally,

a “soft” droplet in the field-following regime has the sim-
plest frequency locking ofv,,;. If the field frequency ex-
ceeds the critical one, a breakoff of the droplet takes place
and it rotates at a lower frequency than the field frequency
[see approximatior{16)]. In that region other asv,,, fre-

o quency locked regimes take place.

=
1

VIl. CONCLUSIONS AND DISCUSSION

Ratio of viscosities A

It is shown that the angular velocity of a 2D ferrofluid
droplet in an elliptically polarized field exhibits a frequency
: locking to the magnetic field rotation exhibiting a devil's

0.48 staircase structure. Dependence of Arnold’'s tongues on the
control parameters of the system are calculated. The coexist-
ence of different frequency-locking regimes as shown by the

FIG. 10. The dependence of the width of frequency locking onnysSteresis phenomena with variation of the control param-
the droplet viscosity, Arnold’s tongues diagram in the phase plan&ters is demonstrated by numerical calculations. The choice
defined by the ratio of viscosities and the field frequencg,, . of a definite mode is very sensitive to initial conditions. The
fractal character of the basins of attraction found numerically
for different frequency-locked modes serves as an illustra-
tion. Beyond the critical value of the field ellipticity param-
eter the behavior of the droplet becomes chaotic as shown by
phase space plots.

Although frequency locking in the present paper is estab-
lished for a two-dimensional magnetic liquid droplet, there
are good reasons to believe that this phenomenon also exists
&n three dimensions, since the physics inferred is essentially
the same. It can possibly be observed as a staircaselike de-

;ggreisﬁrﬁjigt S“;?gni?efnffrt'&g f?;tzz::slc_jlggll(?r:'zatr'lzrr';o';pendence for the torque, which acts on the .container vyith a
n2. €y p 1Teq y-locking p ferroemulsion, at the frequency of an elliptically polarized
ena. Since inertia plays no role in the oscillations of drople ield

due to its small size, to have a frequency locking there have

: X S Results of the present work can serve as a guideline for
to be two oscillatory motions. One oscillation frequency

it turally | intained by th tational i fobservation of the various frequency-locked modes in the
quite naturally 1S maintained by the rotational component Oly,qq f 5 real three-dimensional magnetic droplet, which of-
a magnetic fieldH,,;. Another one is introduced into the

. . g fers new experimental possibilities for studies of complex
motion of the droplet by a pure oscillatory field,.. A b b P

: S namics and transition to the chaos. Also within a frame of
sketch of the mechanism of frequency locking in the prese y

tudv foll TheH ith teady rotati fth e present 2D magnetic fluid droplet model it is possible to
study Tollows. ro CAUSES €ltner a steady rotation o1 the o 0o me the usual problem of reducing the set of hydrody-
droplet or a nonsteady one but periodic rotation with oscil-

: ) ) o namic equations to some finite dynamical system by study-
lations provided the field frequency exceeds the crltlc_al one?ng the fqrequency locking and thg transitionyto chac))/tic dy)-/

hamics employing an exact boundary integral equation
Ctechnique.

10° = . -
0.32 0.36 0.40

Magnetic field frequency €,

less, at\=100 the width of the modev,, is still quite com-
mensurable with the distance from the madg, to adjacent
modesw,;; andwy;. The second property of is attributed
to the shift of frequency-locking towards larger frequencies,
with \ increasing.
The way the frequency-locking width depends riol-

lows from general mechanisms of frequency locking for
ferrofluid droplet in an elliptically polarized magnetic field.

than that of a field. Pure linear oscillations of a magneti
field causes droplet oscillations M-axis direction at fre-
quency of Z),. Amplitudes of both oscillations markedly
depend or\: increase in\ causes reduction of amplitudes.
In the limit of A—co (rigid drople) the elongation of the This work was supported by “Le Reau Formation Re-
droplet is fixed(constantand only the phase lag between the cherche No. 90R0933 du Ministe de I'Enseignement Su-
magnetic field and the droplet could oscillate according taperieur et de la Recherche” of France. Two of(4sC. and

Eg. (19. Since for a system without inertia the self- S.L) are grateful to International Science Foundation for fi-
resonance is absent, two “external” frequencies are requiredancial support of research under a long-time Grant LJQ100.
in order to realize the frequency locking. Hence, a rigid drop-J.C.B. is affiliated with Universit®aris 7.
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