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Frequency locking and devil’s staircase for a two-dimensional ferrofluid droplet
in an elliptically polarized rotating magnetic field
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Numerical studies reveal that the dynamics of a magnetic fluid droplet under the action of an elliptically
polarized rotating magnetic field can be quite complicated, including a transition to a chaotic behavior. On the
basis of equations of motion derived by a virial method, the devil’s staircase, and its Farey tree structure, is
found for the time-averaged angular velocity of the droplet as a function of the angular velocity of the
elliptically polarized field. By considering frequency locking~Arnold tongues! with respect to the magnetic
Bond number, we establish multiple basins of attraction in different regions of the parameter space. The fractal
character of basins of attraction is revealed and phenomena of hysteresis are shown from numerical scanning
of the region of control parameters. The existence of period doublings and the transition to chaotic behavior at
large field ellipticity parameters is suggested on the basis of phase space plots.@S1063-651X~97!00502-3#

PACS number~s!: 47.52.1j, 75.50.Mm, 83.50.Lh
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I. INTRODUCTION

A system with a nonzero magnetic dipole moment in
rotating magnetic field tends to follow the field rotation un
some critical frequency is reached, at which time the frict
torque can no longer be balanced by the magnetic torque@1#.
At this point a ‘‘breakoff’’ takes place and the rotation of th
dipole becomes ‘‘jerky.’’ In the case of an elliptically pola
ized field similar phenomena are observed for a bound
of nonmagnetic particles in a magnetic fluid@2,3#. Interac-
tion between magnetic and viscous forces leads to var
modes of motion, classified as~1! steady-state rotation;~2!
rotation with stops and backward motion; and~3! localized
oscillations. Transitions between these modes are well
scribed by a single nonlinear equation and depend on
frequency, the amplitude of the rotating field, the fluid v
cosity, and the magnetic susceptibility. It is established, b
experimentally and numerically@3# that for a pair of free
spheres frequency locking takes place in an elliptical po
ized field for V̄/VH51/2, 1/4, etc., whereV̄ is the average
angular frequency of the pair rotation, andVH is the angular
frequency of the magnetic field rotation. Recent studies o
pair of rigid ~undeformable! ferrofluid drops in a rotating
magnetic field@4# display the existence of a frequency pl
teau in the high-frequency range for the pair rotation, th
demonstrating the relevance of internal rotations. Cha
motion of a compass@5#, and that of a permanent magn
rotor @6# in an oscillating field, are other well known ex
amples of complex dynamic behavior in an oscillating fie
when the inertia of the system plays a considerable role.
behavior of a liquid microdroplet, typically 10mm sized and
made of a magnetic fluid~MF!, has been experimentall
studied under the action of a rotating magnetic field. It
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551063-651X/97/55~3!/2640~9!/$10.00
n

ir

us

e-
e

th

r-

a

s
ic

e

-

cludes a wide variety of very complex phenomena in
high-frequency range@7#. In the low-frequency range the
shape of such a droplet is close to a general ellipsoid@7,8#.
This behavior, even at low frequencies, could be rather co
plex, since a droplet has more degrees of freedom tha
rigid magnetic dipole under the action of a rotating field. F
such a system the viscous energy dissipation is signific
and the inertia plays no role due to the small size of dropl

The response of a MF microdrop to a rotating magne
field is studied numerically in two dimensions~2D! by the
boundary element method~BEM! in @9#. In the low-
frequency range the elongated droplet rotates with the
quency of a magnetic field. An increase in the field fr
quency may cause the motion of the droplet to go throug
transition from a state in which the droplet follows the ma
netic field with a constant phase lag, to a state in which
phase lag increases in a series of kinks. The transition ta
place at a critical field frequency, which is a function of th
field amplitude. Equations of the droplet motion are deriv
analytically and show good agreement with the BEM.

Two different types of steady-state behavior are obser
depending on the magnetic field strengthH. Both types of
behavior are discerned by a critical value of the magne
bond number

Bmcr5
HCR
2 R

s
56p~m11!3/~m21!3, ~1!

for a droplet of radiusR, surface tensions, and permeability
m. The bond number gives the threshold value for instabi
of a 2D MF circular droplet in a high-frequency rotating fie
with respect to the elliptical deformations@7,8,10#. At m515
Bmcr528.14.

~i! ‘‘Low-field’’ behavior: If the magnetic bond numbe
is less than the critical value, the droplet extension in stati
ary configurations diminishes as the rotating field frequen
increases. The maximal phase lag valuep/4 is reached at an
infinite frequency.
ti-
2640 © 1997 The American Physical Society
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55 2641FREQUENCY LOCKING AND DEVIL’S STAIRCASE FOR . . .
~ii ! ‘‘High-field’’ behavior: For magnetic bond number
larger than the critical value the maximal phase lag~'p/4! is
reached already at a finite critical frequencyVcr~Bm!. It was
shown in@9#, by a linear analysis of small perturbations
differential equations, that for a motion near the station
point, a finite viscosity inside the droplet brings about sta
lizing effects and assists the droplet to follow the magne
field rotation. At ‘‘high-field’’ values it results in time-
averaged frequency jumps from the field frequencyVH to
some smaller value just above the critical frequencyVcr . By
increasing the ratio of viscositiesl5h in/hex the critical fre-
quencyVcr may be slightly reduced to approach the analy
cal valueVcr0 @see relation~14! further in the text#.

Preliminary simulations have shown@9# that in the case of
rotating elliptically polarized magnetic fields the frequen
locking takes place as demonstrated in@3#. Frequency lock-
ing and observation of the devil’s staircase in a phase p
V̄/VH versusVH is the subject of the present paper.

II. EQUATIONS OF MOTION FOR A 2D ELLIPTIC
DROPLET IN AN ELLIPTICAL ROTATING FIELD

We made use of the equations of motion derived in@9#
and improved in@11#. The set of equations describes a M
droplet in a low-frequency rotating field under the assum
tion of a 2D elliptic shape and accounts for shear flow
curring inside the droplet. A 2D Stokes flow problem outsi
the droplet is solved exactly, whereas the flow inside is
scribed in the approximation of constant velocity gradien
Dynamic boundary conditions are satisfied integrally by e
ploying the virial moment technique. Arbitrary viscosities
a fluid inside and outside the droplet are considered.
small size of a microdroplet and relatively small characte
tic velocities of a flow allow us to neglect inertia and grav
terms, thus focusing attention on surface tension and m
netic forces on the surface of the droplet. Hence, the dyn
ics of the free surface of the droplet can be described wi
a framework of the creeping flow model.

An elliptic incompressible MF droplet is completely d
termined by the length of its large semiaxisadim and the
anglew of its orientation with respect to theXlab axis of the
laboratory frame~see Fig. 1!. To conserve the elliptic shap
of the droplet the flow inside the droplet is approximated

FIG. 1. Sketch of the droplet in laboratory coordinates.
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constant gradientsgik of velocity field

n i5g ikxk . ~2!

Consequently, equations of motion@11# may be expressed in
a nondimensional form in the following way:

ȧ5
2a4

p~a41112la2! F ~m21!2

16
BmaSH0a

2

H0
2

1

~a21m!2

2
H0b
2

H0
2

1

~a2m11!2D 2
F~a!

a421G , ~3!

ẇ5
H0aH0b

H0
2

Bm

8p

~m21!2a2

~a21m!~a2m11!

3

2a2
a411

a421
1l~a421!

2a21l~a411!
. ~4!

HereH0a andH0b are the instantaneous projections of t
external field intensity on both axes of an elliptical drople

F~a!5@~a411!E~e!22K~e!#,

l5h in /hex, a5adim/R,

where

E~e!5E
0

p/2
A12~e sinx!2dx

and

K~e!5E
0

p/2

1/A12~e sinx!2dx

are complete elliptic integrals of the first, respectively, s
ond kind, e2512b2/a2, hin , hex: viscosities of fluid in-
side, respectively, outside the droplet.

The radius of a circular dropR5Aadimbdim and a time
scaling unittb5Rhex/s are used to obtain a nondimension
form of equations. The interplay of magnetic forces and s
face tension is characterized by the magnetic bond num
Bm5H 0

2R/s.
The main improvement in comparison with the equatio

considered in@9# is a more adequate representation of t
extensional motion of a droplet as well as of the rotatio
motion caused by the shear flow inside a droplet. Comp
son with results of numerical simulations by BEM prov
that these equations of motion can be used to simulate
behavior of a droplet in a magnetic field with a fairly goo
accuracy.

In the case of an elliptic field polarization, instantaneo
components of the external magnetic field are given by
following relations:

HX~ t !5H0Xcos~VHt !,

HY~ t !5H0Ysin~VHt !. ~5!
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2642 55LĀCIS, BACRI, CĒBERS, AND PERZYNSKI
By assumingH0X>H0Y the parameterg is introduced to
control the magnetic field ellipticity

H0X5H0A11g, ~6!

H0Y5H0A12g,

g5
H0X
2 2H0Y

2

H0X
2 1H0Y

2 . ~7!

The above provision allows us to keep the effective magn
bond number Bm5H 0

2R/s constant by fixing the mean
square value of the external field which in turn is achiev
by selectingH0 for anyg value

H25@H0Xcos~VHt !#
21@H0Ysin~VHt !#

2

5 1
2 ~H0X

2 1H0Y
2 !5H0

2. ~8!

Hence, the elliptically polarized field is defined by its ‘‘av
erage’’ intensityH0 and the ellipticity parameterg. For a
physical interpretation, the elliptically polarized field can
divided in a pure rotational fieldHrot with the following
components:

HX,rot~ t !5H0A12g cos~VHt !,

HY,rot~ t !5H0A12g sin~VHt !,

and a nondimensional amplitudehrot5A12g, and a pure
linearly oscillating fieldHosc with components

HX,osc~ t !5H0~A11g2A12g!cos~VHt !,

HY,osc~ t !50,

and a nondimensional amplitudehosc5A11g2A12g. By
increasingg from 0 to 1 the rotational field amplitudehrot
tends to approach 0, whereas the oscillating field amplit
hosc increases from 0 to&.

The instantaneous projectionsH0a, H0b of the external
field intensity in the directions of both axes of an ellipt
droplet are implemented in Eqs.~3! and ~4!, and derived as

H0a~ t !5HX~ t !cosw1HY~ t !sinw,

H0b~ t !52HX~ t !sinw1HY~ t !cosw. ~9!

Let us introduce the two nondimensional components of
field in the direction of the semiaxes of an elliptic drop
ha5H0a/H0 andhb5H0b/H0 . Then

ha
25@11cos2wHcos2w1g~cos2wH1cos2w!

1A12g2sin2wHsin2w#/2, ~10!

hb
25@12cos2wHcos2w1g~cos2wH2cos2w!

2A12g2sin2wHsin2w#/2, ~11!

hahb5@2cos2wHsin2w2g sin2w

1A12g2sin2wHcos2w#/2. ~12!
ic

d

e

e

Here wH5VHt. In the case of a circular field polarizatio
~g50! we have

ha
2ug505cos2~wH2w!,

hb
2ug505sin2~wH2w!,

hahbug505sin2~wH2w!/2.

It follows from the above relations that in the case of a c
cular field polarization, the rigid droplet limit~l→`! is
analogous to a bound pair of soft magnetic particles@2#

ẇ5Vcrsin2~wH2w!, ~13!

Vcr5
Bm

16p

~m21!2a2~a421!

~a21m!~a2m11!~a411!
. ~14!

The time-averaged frequencyV̄ of a droplet rotation is de-
fined as

V̄5 lim
T→`

1

T E
0

T

ẇ dt. ~15!

An analytical integration for Eq.~13! gives the following
expression forV̄:

V̄5VH2AVH
2 2Vcr

2 . ~16!

It is worth noting that the value ofa is fixed: it corresponds
either to a ‘‘rigid droplet’’ approximation~l@1! or a ‘‘high-
frequency’’ approximation~VH@Vcr!. ProvidedVH/Vcr→`,
the approximation of ‘‘very high’’ frequencies is reache
yielding

V̄'
Vcr

2

2VH
. ~17!

It is reported in@4# that after a jerky regime, the frequency o
a pair rotation reaches a plateau independent ofVH . Hence,
at sufficiently high frequencies~VH/Vcr@10! the above ap-
proximations could be too rough to describe the behavio
a droplet. Therefore it might be necessary to account
effects like internal rotation.

The elongation of a droplet depends on the intensity of
applied magnetic field. In the stationary caseȧ50 and the
major semiaxisa could be obtained from Eq.~4!

~m21!2

32
BmaS 1

~a21m!2
2

1

~a2m11!2D5
F~a!

a421
. ~18!

The dependence ofa on Bm is plotted in Fig. 2. Curves fo
differentm values certify that the influence of the magne
permeability on the droplet extension could be very stro
Above the magnetic field threshold an instability with r
spect to elliptic shape perturbations may occur. Depend
on the magnetic permeability, it is instability either of th
first kind ~m,10.71! or of the second kind~m.10.71! @10#.
In the case of an elliptic field polarization the equation f
phase lag~4! in the rigid droplet limitl→` becomes
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55 2643FREQUENCY LOCKING AND DEVIL’S STAIRCASE FOR . . .
ẇ5Vcr@2cos2wHsin2w2g sin2w

1A12g2sin2wHcos2w#. ~19!

To obtainV̄ analytical integration of Eq.~19! is obviously
not feasible.

III. NUMERICAL TECHNIQUE
AND FREQUENCY LOCKING

IN AN ELLIPTICALLY POLARIZED FIELD

To solve the system of equations of motion~3! and ~4!,
the fourth-order Runge-Kutta algorithm is applied. T
time-averaged frequencyV̄ is obtained in the following
way: at first in order to achieve attractor from the ba
chosen by initial conditions a numerical algorithm is r
during a specified transition timeTt . After N field revolu-
tions the winding number@12#

wN5
1

2pN E
Tt

Tt12pN/VH
ẇdt5

wH2w0

2pN
~20!

is found. The averaged frequencyV̄5wNVH could be found
with an arbitrary accuracy by increasingN. Truncation er-
rors, as well as the accuracy of the Runge-Kutta algorith
should be taken into account. In Fig. 3~a! the winding num-
ber wN5V̄/VH is plotted versus the field frequencyVH ,
Bm550, m515, l55, g50.15. The time step employed i
the different calculations below equalsDt50.01. The solid
curve depicts the winding numberw obtained by increasing
the field frequency, the dashed one by decreasing it. T
new phenomena are introduced by the elliptic field polari
tion: frequency locking in certain frequency ranges a
overlapping of modes. The first two frequency-locking inte
vals w1/1 and w1/2 are rather wide and correspond to t
frequency range in which the droplet rotation is stabilized
the case of the circular field because of the finite value ol.
The overlapping of the modes results in a hysteresis:
crease in the field frequency causes a jump in the phase p
from the modew1/1 directly to the modew1/2 passing over
nonexistent modes of winding numbers between 1 and 0.
decrease in the field frequency attests that the modew1/2

FIG. 2. Droplet extension in a time-averaged high-frequen
rotating magnetic field.
,

o
-
d
-

-
ne

A

overlaps with the modew1/1 prior to a jump back to the mode
w1/1. A further increase in the field frequency causes prin
pal sequential frequency lockingsw1/3, w1/4, w1/5 to take
place, i.e., the principal sequence of the frequency lock
exhibits itself. According to the Farey tree law between tw
modes with winding numbersp1/q1 andp2/q2 there shall be
another mode (p11p2)/(q11q2). Hereafterwp/q5V̄/VH
5p/q, wherep,q are integer, is used to denote frequen
ratios. The classical devil’s staircase@12,13# has a fractal

y

FIG. 3. ~a!,~b! ~expanded view!. Winding numberw vs mag-
netic field frequencyVH . Bm550, m515, l55. Field ellipticity
parameterg50.15. The solid line corresponds to the increase
frequency and the dashed one to its decrease.~c! Farey tree con-
struction of the observed frequency-locking intervals.
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structure where sequentially all the ratios from the Farey
@12# are present. Here one may see a degenerated de
staircase since an overlapping takes place and winding n
bers between modesw1/1 andw1/2 are not present. Obviousl
degeneration could be eliminated by increasingl, since it
diminishes the stability of the droplet rotation with the fie
frequency~see Fig. 10!.

Another overlapping of frequency-locking intervals tak
place at field frequencies in the range of abo
0.372<VH<0.376 where the modew1/2 is detected at the
increase of the frequency@see Figs. 3~a!, 3~b!#. A frequency
decrease displays a few smaller frequency-locking st
~w2/5, w5/12, andw3/7! and rather complex behavior betwee
the steps. In accordance with properties of the devil’s st
case the intervals of complex behavior could consist
frequency-locking intervals. However, their width may
too small to be detected using the frequency s
DVH50.0005 employed for present calculations.

In Fig. 3~b! the frequency range 0.372<VH<0.385 is
magnified for the sake of comparison with Fig. 3~a!. The left
part of the plot is degenerated due to the overlapping
modes already mentioned above. For frequencies larger
VH50.377 the character of the curve changes into the c
sical devil’s staircase@13#, the winding numbers for
frequency-locking intervals correspond closely to the Fa
tree@12,13# as shown in Fig. 3~c!. At magnification one can
see quite well the self-similarity of the devil’s staircase in t
specified frequency range.

It is evident from Eqs.~3! and~4! that the motion depend
on five parameters: Bm,m, l, g, VH . Here we do not in-
tend to discuss the influence of the magnetic permeabilitm
on solutions, however it should be pointed out thatm cannot
be simply eliminated from the equations of motion by i
cluding it inside the magnetic bond number since there
two terms like~a21m! and ~a2m11! which contain botha
andm. In the present paper we focus on the case ofm515
which corresponds to an intermediate value ofm, since spe-
cial effects, caused by different choices ofm have not yet
been detected.

IV. FREQUENCY LOCKING IN DEPENDENCE
ON MAGNETIC BOND NUMBER

The behavior of a MF droplet in a circular rotating ma
netic field has already been described above. It presents
different scenarios@9# corresponding to ‘‘low-field’’ or
‘‘high-field’’ regimes.

Similar properties are inherited in the case of the ellip
field polarization. In Fig. 4 frequency-locking domains a
plotted in the phase plane Bm versusVH . One can clearly
see the field threshold, below which only one modew5w1/1
~the droplet locked to the field! corresponding to scenario
may exist. Above this threshold different frequency-locki
domains may appear. An increase of Bm results in pra
cally no changes regarding the width or the slope of dom
boundaries.

The principal sequence of the frequency locking may
arrived atw1/q, whereq is an integer. As a general rule, a
the subsequent locks become more and more narrow
hence harder to detect. If the width of the frequency-lock
plateau becomes smaller than the frequency step of the
e
il’s
m-

t

s

r-
f

p

f
an
s-

y

re

wo

i-
in

e

nd
g
u-

merical algorithm, one fails to observe any frequency loc
ing. Behavior of frequency locking seems to be more or l
regular from the frequency range of the modew1/3 to infinity
as well as for Bm larger than 40; i.e., the boundaries of
frequency-locking domain are parallel with a fixed slope.
increasingq, the frequency width of the frequency lockin
w1/q decreases. A rather broad overlapping of domains
the modesw1/1 andw1/2 takes place for lower frequencies
On the contrary, there is no overlapping between the mo
w1/2 andw2/5.

A more complex behavior is observed for 28,Bm,34
and field frequencies 0.32,VH,0.36. An expanded view o
this section of the phase space is reflected in Fig. 4. Bou
aries for frequency-locking domainsw4/5 andw3/4 may not
be determined exhaustively due to the finite numerical me
ods, whereas the domain boundaries for locking of wind
numbersw1/1, w1/2, w2/3, andw3/5 are detected more accu
rately. These values are presented in more detail in a ma
fied plot, where overlapping of four modes takes place in
point ~VH50.335, Bm530.5! of the parameter space. Traje
tories of the droplet’s tip in the laboratory coordinates a
depicted in Fig. 5. The trajectories exhibit a rather sta
motion without any transition. The selection of the mode
which a droplet locks itself depends on the initial condition
To illustrate it, the basins of attraction@14# are plotted in Fig.
6. This map represents the laboratory coordinates of
droplet tip at an initial moment~t50! at which a magnetic
field according to Eq.~5! has only a positiveX component.
The basin of attraction leading to the modew1/2 consists of

FIG. 4. Frequency-locking domains~Arnold tongues! in the
phase plane Bm vsVH . g50.15,m515, l55. Near the origin of
Arnold tongues scanning stepDBm is shown by error bars. A scan
ning step along theVH axis is smaller than 0.0002. At larger value
of Bm a scanning step may be taken larger because boundari
Arnold tongues are nearly straight lines at that range.
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55 2645FREQUENCY LOCKING AND DEVIL’S STAIRCASE FOR . . .
four domains. These are separated by the modew3/5, as is
displayed in the diagram. Domains of initial conditions f
the modew1/1 are concentrated near the corresponding Po
carésections at time momentstn5np/VH . The structure of
the spiral tails of these domains is interesting: it, as well
initial points for modew2/3, exhibits fractal-like properties
illustrated by the expanded view of the present pictu
shown in Fig. 7. In both diagrams the modew1/1 is shown
by empty circles,w1/2: by crosses,w2/3: by filled circles, and

FIG. 5. Four different modes for the point~VH50.335, Bm
530.5! of the phase plane.m515, l55, g50.15.

FIG. 6. Map of initial conditions for four different modes of Fig
5. Mode w1/1: empty circles,w1/2: crosses,w2/3: filled circles,
w3/5: ‘‘-’’ ~hyphens!.
-

s

,

the modew3/5 by small ‘‘-’’ characters~hyphens!. The main
conclusion drawn from both figures indicates that the mo
could be very sensitive to the choice of initial conditions
evolution.

V. DEPENDENCE OF FREQUENCY LOCKING
ON THE FIELD ELLIPTICITY PARAMETER

Another important question pertains to the behavior of
threshold of the magnetic field at a fixed frequency and d
ferent values of the ellipticity parameterg of the field polar-
ization. Figure 8 shows that an increase ing of up tog'0.3
causes negligible change in the threshold value thus confi
ing that the field threshold value is characterized by the m
netic bond number. The two curves in Fig. 8 are indicative
an increasing bond number~solid curve! and a decreasing

FIG. 7. Expanded view of the area from Fig. 6. Mod
w1/1: empty circles,w1/2: crosses,w2/3: filled circles, w3/5: ‘‘-’’
~hyphens!.

FIG. 8. Magnetic field threshold vs the ellipticity parameterg of
the field polarization.
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2646 55LĀCIS, BACRI, CĒBERS, AND PERZYNSKI
bond number~dashed curve!; the shift between these dis
playing the presence of a hysteresis which magnitude co
sponds quite well to the magnitude of hysteresis for drop
elongation in a quasistatic field@10#. If g reaches some lim
iting value, the droplet is locked by the oscillating comp
nent of the field and the rotating component is too weak
cause the rotation of the droplet, the tip of the droplet m
only provide small localized oscillations~modew0/1!.

Influence ofg on the frequency locking tow0/1 is ob-
served in Fig. 8, i.e., the mode of localized oscillations wi
out rotation of a droplet may be observed. The criticag
value equals aboutg50.3–0.4 ~Bm530–140!. This corre-
sponds to the amplitude of a pure rotating fie
hrot50.84–0.77, whereas the amplitude of a pure oscillat
field equalshosc50.30–0.55 undimensional units. The max
mumg value for the droplet rotation increases as the value
Bm is raised. Upon increasing Bm, the rise in the magn
torque turns out to be more significant than the rise in
friction torque thus the droplet can perform full revolutio
of up to a slightly higherg limit ~see Fig. 8!

Traditional representation of the frequency-locking ph

FIG. 9. Arnold’s tongues diagram in the phase plane defined
the field ellipticity parameterg and the field frequencyVH . ~a!
Frequency-locking domains forw1/1 andw0/1. ~b! Expanded view of
the frequency-locking domains for intermediateg values.
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t
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nomena depending on the control parameter is the so-ca
Arnold’s tongue diagram @13,15#. Figure 9~a! plots
frequency-locking domains in the phase plane of the fi
ellipticity parameterg versus the field frequencyVH for Bm
550,m515,l55. Two modesw1/1 andw0/1 predominate in
the frequency rangeVH without any overlapping. The spac
between these modes is filled with Arnold’s tongues
other modes atg,0.275. The boundaries of the domainsw1/1
andw0/1 are quite smooth, except for a quite sharp decre
in the slope of the modew1/1 at g of about 0.275. The value
of g50.275 turns out to be near the criticalg value above
which the droplet motion becomes chaotic and Arnold
tongues lose their orderly structure. Qualitative phase p
show that period doublings and transition to chaotic dyna
ics take place in the above region. The droplet behavior
g.0.275 ~Region X! illustrated by the phase space plot
Lyapunov indices, and Fourier spectra will be addressed
future publications. Expanded view of Fig. 9~a! belowg50.3
is given in Fig. 9~b!. Flat top boundaries of the tongues clo
to ‘‘Region X’’ are approximate; detailed investigation o
the structure requires further studies. We would also like
point out that one can see two sequences of frequency l
ing in Fig. 9~b!; the principal sequence is represented as 1q,
the second one as 2/~2q11!, whereq is the integer. Beyond
w1/10 the structure of tongues becomes too dense to
shown, intervals ‘‘•••’’ are used to substitutew1/q and
w2/(2q11), for q.10. A unique property of the present sy
tem is the overlapping of modesw1/1 and w1/2: even at
g→0 a complete overlapping takes place. The placemen
the frequency-locking domainw2/3 at g of about 0.27 and
VH'0.35 looks curious, but in fact it evidently may be e
plained with common properties of the structure of Arnold
tongues in the case of a supercritical regime@16#. Through-
out all the present work, we use valueg50.15 every time
when parameterg is fixed ~i.e., when it is constant!. This
value of g is regarded as a moderate value of the con
parameter for the field ellipticity.

VI. DEPENDENCE OF FREQUENCY LOCKING
ON THE VISCOSITY RATIO

An increase inl corresponds to an increase of the visco
ity ratio. Here we may discuss the casel55, a case of mod-
erate MF viscosity compared to@7#, wherel'100. 2D simu-
lations using the boundary element method@17# show that in
the case of an arbitrary shape~without the constraint of an
elliptic shape!, a ferrofluid droplet displays a transition to a
‘‘ S’’-like shape forl@1 and even forl55. Nevertheless, the
results of present studies could be applied because forl55
the bending just slightly eliminates effective extension of t
droplet and thus causes a minor decrease in the friction
efficient. General properties of droplet rotation still rema
identical.

Arnold’s tongues are plotted in the phase planel ~log-
scale! versusVH in Fig. 10. The values of passive param
eters are Bm550,m515,g50.15. The overlapping of mode
w1/1 andw1/2 is a common phenomenon up tol5115; for
larger values ofl modes do not overlap. Overlapping o
modesw1/2 andw1/3 occurs only atl values of up tol'1.5.
In general, an increase inl thins down the frequency-locking
width thus tending to eliminate the overlapping. Neverth
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less, atl5100 the width of the modew1/2 is still quite com-
mensurable with the distance from the modew1/2 to adjacent
modesw1/1 andw1/3. The second property ofl is attributed
to the shift of frequency-locking towards larger frequenci
with l increasing.

The way the frequency-locking width depends onl fol-
lows from general mechanisms of frequency locking fo
ferrofluid droplet in an elliptically polarized magnetic field
In the present study the ellipticity of the field polarization,
fact, is the key parameter for the frequency-locking pheno
ena. Since inertia plays no role in the oscillations of drop
due to its small size, to have a frequency locking there h
to be two oscillatory motions. One oscillation frequen
quite naturally is maintained by the rotational component
a magnetic fieldHrot . Another one is introduced into th
motion of the droplet by a pure oscillatory fieldHosc. A
sketch of the mechanism of frequency locking in the pres
study follows. TheHrot causes either a steady rotation of t
droplet or a nonsteady one but periodic rotation with os
lations provided the field frequency exceeds the critical o
@9#. In the last case, the frequency of droplet rotation is l
than that of a field. Pure linear oscillations of a magne
field causes droplet oscillations inX-axis direction at fre-
quency of 2VH . Amplitudes of both oscillations markedl
depend onl: increase inl causes reduction of amplitude
In the limit of l→` ~rigid droplet! the elongation of the
droplet is fixed~constant! and only the phase lag between t
magnetic field and the droplet could oscillate according
Eq. ~19!. Since for a system without inertia the se
resonance is absent, two ‘‘external’’ frequencies are requ
in order to realize the frequency locking. Hence, a rigid dro

FIG. 10. The dependence of the width of frequency locking
the droplet viscosity, Arnold’s tongues diagram in the phase pl
defined by the ratio of viscositiesl, and the field frequencyVH .
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let, as well as a droplet in a pure circularly polarized ma
netic field, fails to exhibit any frequency locking. Naturall
a ‘‘soft’’ droplet in the field-following regime has the sim
plest frequency locking ofw1/1. If the field frequency ex-
ceeds the critical one, a breakoff of the droplet takes pl
and it rotates at a lower frequency than the field freque
@see approximation~16!#. In that region other asw1/1 fre-
quency locked regimes take place.

VII. CONCLUSIONS AND DISCUSSION

It is shown that the angular velocity of a 2D ferroflu
droplet in an elliptically polarized field exhibits a frequenc
locking to the magnetic field rotation exhibiting a devil
staircase structure. Dependence of Arnold’s tongues on
control parameters of the system are calculated. The coe
ence of different frequency-locking regimes as shown by
hysteresis phenomena with variation of the control para
eters is demonstrated by numerical calculations. The ch
of a definite mode is very sensitive to initial conditions. T
fractal character of the basins of attraction found numerica
for different frequency-locked modes serves as an illus
tion. Beyond the critical value of the field ellipticity param
eter the behavior of the droplet becomes chaotic as show
phase space plots.

Although frequency locking in the present paper is est
lished for a two-dimensional magnetic liquid droplet, the
are good reasons to believe that this phenomenon also e
in three dimensions, since the physics inferred is essent
the same. It can possibly be observed as a staircaselike
pendence for the torque, which acts on the container wit
ferroemulsion, at the frequency of an elliptically polarize
field.

Results of the present work can serve as a guideline
observation of the various frequency-locked modes in
case of a real three-dimensional magnetic droplet, which
fers new experimental possibilities for studies of comp
dynamics and transition to the chaos. Also within a frame
the present 2D magnetic fluid droplet model it is possible
overcome the usual problem of reducing the set of hydro
namic equations to some finite dynamical system by stu
ing the frequency locking and the transition to chaotic d
namics employing an exact boundary integral equat
technique.
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